organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.056 wR factor = 0.186 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl}acetate

The title compound, $C_{18}H_{16}N_2O_4$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 5-chloromethyl-3-phenyl-1,2,4-oxadiazole. In the crystal structure, there are weak intermolecular $C-H\cdots O$ hydrogen bonds and weak $C-H\cdots \pi$ (arene) interactions. Received 7 July 2004 Accepted 28 July 2004 Online 7 August 2004

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), antiinflammatory (Nicolaides *et al.*, 1998), and antipicornaviral (Romero, 2001) properties and are efficient as agonists [*e.g.* formuscarinic (Macor *et al.*, 1996), adrenergic agents (Quagliato & Andrae, 2002) and 5-hydroxytryptamine (Gur *et al.*, 2001)] and antagonists [*e.g.* for angiotension (Naka & Kubo, 1999 and adhesion (Juraszyk *et al.*, 1997)] for different receptors.

The molecular structure of (I) is shown in Fig. 1 and the bond lengths and angles are given in Table 1. In the crystal structure, molecules are linked by $C-H\cdots O$ hydrogen bonds and there is also an intermolecular contact which indicates a weak $C-H\cdots\pi$ (arene) interaction. Full details of the hydrogen bonding are given in Table 2 (see also Fig. 2 and Fig. 3). The combination of both types of weak interactions generates a three-dimensional network.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level

Figure 2

The crystal structure of (I). Dashed lines indicate weak C-H···O hydrogen bonds.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 5-Chloro-3-phenyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 4 h, then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate (m.p. 354-355 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis, ¹H NMR (CDCl₃, p.p.m.): 8.12-8.13 (m, 2H), 7.50-7.55 (m, 3H), 7.26-7.32 (m, 2H), 7.01-7.06 (m, 2H), 5.39 (s, 2H), 3.77 (s, 2H), 3.73 (s, 3H)).

Crystal data

$C_{18}H_{16}N_2O_4$	Z = 2
$M_r = 324.33$	$D_x = 1.343 \text{ Mg}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiati
a = 8.7850 (18) Å	Cell parameter
b = 9.848 (2) Å	reflections
c = 10.345 (2) Å	$\theta = 10-13^{\circ}$
$\alpha = 77.90 \ (3)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 79.12 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 67.39 \ (3)^{\circ}$	Block, colourle
$V = 802.0 (3) \text{ Å}^3$	$0.40 \times 0.30 \times$

Data collection

Enraf–Nonius CAD-4
diffractometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(SHELXTL; Siemens, 1996)
$T_{\min} = 0.963, T_{\max} = 0.972$
3347 measured reflections
3129 independent reflections
2141 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.186$ S = 1.173129 reflections 217 parameters H-atom parameters constrained

$\mathbf{Z} = \mathbf{Z}$
$D_x = 1.343 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 25
reflections
$\theta = 10 - 13^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.40 \times 0.30 \times 0.30$ mm

 $R_{\rm int}=0.022$ $\theta_{\rm max} = 26.0^{\circ}$ $h = 0 \rightarrow 10$ $k = -11 \rightarrow 12$ $l=-12\rightarrow 12$ 3 standard reflections every 200 reflections intensity decay: negligible

 $w = 1/[\sigma^2(F_o^2) + (0.076P)^2 + 0.34P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

			~	
0 1 4 1			/ A	\circ
Selected	geometric	parameters	IA.	~ I
	A		·	

O1-C8	1.326 (3)	N1-C7	1.296 (4)
O1-N1	1.418 (3)	N2-C8	1.291 (3)
O2-C10	1.375 (3)	N2-C7	1.383 (4)
O2-C9	1.418 (3)	C8-C9	1.497 (4)
O3-C17	1.328 (3)	C15-C16	1.504 (4)
O3-C18	1.450 (4)	C16-C17	1.499 (4)
O4-C17	1.200 (3)		
C8-O1-N1	106.2 (2)	N2-C8-O1	113.8 (2)
C10-O2-C9	118.2 (2)	N2-C8-C9	131.1 (3)
C17-O3-C18	116.0 (2)	02-C9-C8	112.3 (2)
C7-N1-O1	103.3 (2)	C17-C16-C15	112.7 (2)
C8-N2-C7	102.5 (2)	O4-C17-O3	122.9 (2)
N1-C7-N2	114.3 (3)	O4-C17-C16	125.7 (3)
N1-C7-C3	122.3 (3)		

Table	2		
TT 1		1	11

Tuble 2	
Hydrogen-bonding geo	metry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline C11-H11A\cdots O4^{i}\\ C18-H18A\cdots O3^{ii}\\ C9-H9A\cdots Cg3^{i} \end{array}$	0.93	2.47	3.319 (4)	152
	0.96	2.55	3.272 (5)	132
	0.97	2.81	3.503 (4)	129

Symmetry codes: (i) 1 - x, -y, -z; (ii) -x, -y, 1 - z. Cg3 is the centroid of the ring C10-C15

All H atoms were placed in calculated positions, with C-H distances in the range 0.93-0.97 Å. They were included in the ridingmodel approximation, with $U_{iso} = 1.2U_{eq}(C)$ or $1.5_{eq}(C_{Me})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands

Gur, E., Dremencov, E., Lerer, B. & Newman, M. E. (2001). *Eur. J. Pharmacol.* **411**, 115–122.

- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. No. 9744333.
- Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. & Mack, R. A. (1996). J. Org. Chem. 61, 3228–3229.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.

- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- Quagliato, D. A. & Andrae, P. M. (2002). PCT Int. Appl. WO 0206250.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 0260439.