Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methyl \{2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl\}acetate

Hai-Bo Wang,* Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail:
wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.186$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 5-chloro-methyl-3-phenyl-1,2,4-oxadiazole. In the crystal structure, there are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita et al., 2002), antiinflammatory (Nicolaides et al., 1998), and antipicornaviral (Romero, 2001) properties and are efficient as agonists [e.g. formuscarinic (Macor et al., 1996), adrenergic agents (Quagliato \& Andrae, 2002) and 5-hydroxytryptamine (Gur et al., 2001)] and antagonists [e.g. for angiotension (Naka \& Kubo, 1999 and adhesion (Juraszyk et al., 1997)] for different receptors.

(I)

The molecular structure of (I) is shown in Fig. 1 and the bond lengths and angles are given in Table 1. In the crystal structure, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and there is also an intermolecular contact which indicates a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interaction. Full details of the hydrogen bonding are given in Table 2 (see also Fig. 2 and Fig. 3). The combination of both types of weak interactions generates a three-dimensional network.

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level

Received 7 July 2004
Accepted 28 July 2004
Online 7 August 2004

Figure 2
The crystal structure of (I). Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 5-Chloro-3-phenyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 4 h , then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate (m.p. 354-355 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.) : 8.12-8.13 ($\mathrm{m}, 2 \mathrm{H}$), 7.50-7.55 ($\mathrm{m}, 3 \mathrm{H}$), 7.26-7.32 ($\mathrm{m}, 2 \mathrm{H}$), 7.01-7.06 (m , $2 \mathrm{H}), 5.39(s, 2 \mathrm{H}), 3.77(s, 2 \mathrm{H}), 3.73(s, 3 \mathrm{H}))$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=324.33$
Triclinic, $P \overline{1}$
$a=8.7850(18) \AA$
$b=9.848(2) \AA$
$c=10.345(2) \AA$
$\alpha=77.90(3)^{\circ}$
$\beta=79.12(3)^{\circ}$
$\gamma=67.39(3)^{\circ}$
$V=802.0(3) \AA^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (SHELXTL; Siemens, 1996) $T_{\text {min }}=0.963, T_{\text {max }}=0.972$ 3347 measured reflections 3129 independent reflections
2141 reflections with $I>2 \sigma(I)$

Refinement

[^0]

The $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions in (I), shown as dashed lines.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

O1-C8	$1.326(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.296(4)$
O1-N1	$1.418(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.291(3)$
O2-C10	$1.375(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.383(4)$
O2-C9	$1.418(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.497(4)$
$\mathrm{O} 3-\mathrm{C} 17$	$1.328(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.504(4)$
$\mathrm{O} 3-\mathrm{C} 18$	$1.450(4)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.499(4)$
$\mathrm{O} 4-\mathrm{C} 17$	$1.200(3)$		
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{N} 1$	$106.2(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 1$	$113.8(2)$
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 9$	$118.2(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$131.1(3)$
$\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 18$	$116.0(2)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$112.3(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{O} 1$	$103.3(2)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$112.7(2)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$102.5(2)$	$\mathrm{O} 4-\mathrm{C} 17-\mathrm{O} 3$	$122.9(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$114.3(3)$	$\mathrm{O} 4-\mathrm{C} 17-\mathrm{C} 16$	$125.7(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 3$	$122.3(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.93	2.47	$3.319(4)$	152
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O}^{\text {ii }}$	0.96	2.55	$3.272(5)$	132
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 9 A \cdots \mathrm{C}^{\mathrm{i}}$		0.97	2.81	$3.503(4)$

Symmetry codes: (i) $1-x,-y,-z$; (ii) $-x,-y, 1-z . C g 3$ is the centroid of the ring C10 C15.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$. They were included in the ridingmodel approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5_{\text {eq }}\left(\mathrm{C}_{\mathrm{Me}}\right)$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

organic papers

Gur, E., Dremencov, E., Lerer, B. \& Newman, M. E. (2001). Eur. J. Pharmacol. 411, 115-122.
Harms, K. (1995). XCAD4. University of Marburg, Germany.
Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. \& Melzer, G. (1997). PCT Int. Appl. No. 9744333.

Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. \& Mack, R. A. (1996). J. Org. Chem. 61, 3228-3229.
Naka, T. \& Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.

Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. \& Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.

Quagliato, D. A. \& Andrae, P. M. (2002). PCT Int. Appl. WO 0206250.
Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Terashita, Z., Naruo, K. \& Morimoto, S. (2002). PCT Int. Appl. WO 0260439.

[^0]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
 $w R\left(F^{2}\right)=0.186$
 $S=1.17$
 3129 reflections
 217 parameters
 H -atom parameters constrained

